Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Finite-Element Method

Authors: Wolfgang Hackbusch;

The Finite-Element Method

Abstract

In Chapter 7 the variational formulation has been introduced to prove the existence of a (weak) solution. Now it will turn out that the variational formulation is extremely important for numerical purposes. It establishes a new, very flexible discretisation method. After historical remarks in Section 8.1 we introduce the Ritz–Galerkin method in Section 8.2. The basic principle is the replacement of the function space V in the variational formulation by an N-dimensional space. This leads to a system of N linear equations (§8.2.1). As described in §8.2.2, the theory from Chapter 7 can be applied. In §8.2.3 two criteria, the inf-sup condition and V-ellipticity are described which are sufficient for solvability. §8.2.4 contains numerical examples. Error estimates are discussed in Section 8.3. The quasioptimality of the Ritz–Galerkin method proved in §8.3.1 shifts the discussion to the approximation properties of the subspace (§8.3.2). The finite elements introduced in Section 8.4 form a special finite-dimensional subspace offering many practical advantages. The corresponding error estimates are given in Section 8.5. Generalisations to differential equations of higher order and to non-polygonal domains are investigated in Section 8.6. An important practical subject are a-posteriori error estimates discussed in Section 8.7. When solving the arising system of linear equations, the properties of the system matrix is of interest which are investigated in Section 8.8. Several other topics are sketched in the final Section 8.9.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?