
arXiv: 1404.7060
We consider the problem of testing if two input forests are isomorphic or are far from being so. An algorithm is called an $\varepsilon$-tester for forest-isomorphism if given an oracle access to two forests $G$ and $H$ in the adjacency list model, with high probability, accepts if $G$ and $H$ are isomorphic and rejects if we must modify at least $\varepsilon n$ edges to make $G$ isomorphic to $H$. We show an $\varepsilon$-tester for forest-isomorphism with a query complexity $\mathrm{polylog}(n)$ and a lower bound of $��(\sqrt{\log{n}})$. Further, with the aid of the tester, we show that every graph property is testable in the adjacency list model with $\mathrm{polylog}(n)$ queries if the input graph is a forest.
ICALP 2014 to appear
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
FOS: Computer and information sciences, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
