Powered by OpenAIRE graph
Found an issue? Give us feedback
https://doi.org/10.1...arrow_drop_down
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1965 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1965 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 1965 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 1965 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Function Spaces and Banach Spaces

Authors: Karl R. Stromberg; Edwin Hewitt;

Function Spaces and Banach Spaces

Abstract

The theory of integration developed in Chapter Three enables us to define certain spaces of functions that have remarkable properties and are of enormous importance in analysis as well as in its applications. We have already, in § 7, considered spaces whose points are functions. In §7, we considered only the uniform norm ∥ ∥ u [see (7.3)] to define the distance between two functions. The present chapter is concerned with norms that are defined in one way or another froia integrals. The most important such norms are defined and studied in § 13. These special norms lead us very naturally to study abstract Banach spaces, to which § 14 is devoted. While we are not concerned with Banach spaces per se, it is an inescapable fact that many results can be proved as easily for all Banach spaces [perhaps with some additional property] as for the special Banach spaces defined in §§ 7 and 13. Our desires both for economy of effort and for clarity of exposition dictate that we treat these results in general Banach spaces. In § 15, we give a strictly computational construction of the conjugate spaces of the function spaces \({{\mathcal{L}}_p}(1 < p < \infty)\). We have chosen this construction because of its elementary nature and also because we think that manipulation of inequalities is something that every student of analysis should learn. In § 16, we consider Hilbert spaces, which are \({{\mathcal{L}}_2}\) spaces looked at abstractly, and also give some concrete examples and illustrations.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!