
Yamabe wanted to solve the Poincare conjecture (see 9.14). For this he thought, as a first step, to exhibit a metric with constant scalar curvature. He considered conformal metrics (the simplest change of metric is a conformal one), and gave a proof of the following statement “On a compact Riemannian manifold (M, g), there exists a metric g′ conformal to g, such that the corresponding scalar curvature R′ is constant”. The Yamabe problem was born, since there is a gap in Yamabe’s proof. Now there are many proofs of this statement. We will consider some of them, but if the reader wants to see one proof, he has to read only sections 5.11, 5.21, 5.29 and 5.30.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
