
The frictionless motion of a particle on a plane billiard table The frictionless motion of a particle on a plane billiard table bounded by a closed curve provides a very simple example of a conservative classical system with non-trivial, chaotic dynamics. The limiting cases of strictly regular ("integrable") and strictly irregular ("ergodic") systems can be illustrated, as well as the typical case which shows an intricate mixture of regular and irregular behavior. Irregular orbits are characterized by an extremely sensitivity with respect to the initial conditions. Such billiard systems are exemplarily suited for educational purposes as models for simple systems with complicated dynamics as well as for far-reaching fundamental investigations.
chaotic dynamics, chaos, computer program, billiards, ddc: ddc:530
chaotic dynamics, chaos, computer program, billiards, ddc: ddc:530
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
