
Let X = Σ Xi∂i = Σ piξi∂i be a vectorfield on Δ. X is a function from Δ to RI. We define the Hessian of X at p, HPX: Tp Δ × Tp Δ → R to be the bilinear form defined by: $$ {H_P}X\left( {{Y^1}{Y^2}} \right) = {\left( {{d_P}X\left( {{Y^1}} \right),{Y^2}} \right)_P}. $$ (1.1) .
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
