
pmid: 7015107
Application of vibrational spectroscopy to the problem of structure determination of molecules of biological interest goes back to the early uses of raman and infrared spectroscopy in the study of organic molecules. For reviews of earlier work the reader is referred to compilations by Kohlrausch (1943) and by Jones and Sandorfy (1956), whereas more recently a comprehensive discussion has been presented by Bellamy (1975). These compilations accentuate the correlation of vibrational spectra with molecular structure from an essentially empirical point of view and culminate in the establishment of empirical correlation charts. For typical examples the reader is referred to Weast (1974) and Bellamy (1975). There have been many treatments of the theoretical basis of molecular vibrational spectroscopy. Among them the classical work by Herzberg (1945) and by Wilson et al. (1955) should be mentioned. Applications of infrared spectroscopy (IR) to structure problems of biological interest have been summarized by Susi (1969), Fraser and MacRae (1973), and Wallach and Winzler (1974). It was remarked quite eraly that relevant structural information about biological systems often requires study in aqueous solution, which forms the natural environment for most biologically important systems. Besides critical control of experimental conditions and samples the conventional methods of raman spectroscopy may be applied to aqueous solutions in a quite straightforward manner, cf. the contribution by Lord and Mendelson, Chapter 8.
Neodymium, 570, Membranes, Spectrophotometry, Infrared, Phosphatidylethanolamines, Lipid Bilayers, Temperature, Membrane Proteins, Proteins, Water, 540, Amides, Hydrocarbons, Phosphatidylcholines, ddc:570, Phospholipids
Neodymium, 570, Membranes, Spectrophotometry, Infrared, Phosphatidylethanolamines, Lipid Bilayers, Temperature, Membrane Proteins, Proteins, Water, 540, Amides, Hydrocarbons, Phosphatidylcholines, ddc:570, Phospholipids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 273 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
