
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>This chapter is a brief introduction into the structure of algebras, mostly finite dimensional, over any field k. The main contents are the Wedderburn theorems for a finite dimensional algebras A over an algebraically closed field k. If A has no nilpotent ideals ≠ 0, then A is a finite product of total matrix algebras over k. In this case, the set d (A) of degrees of the total matrix algebras is a complete set of invariants of A. Thus, 13.7 two finite dimensional semiprime algebras A and B over k are isomorphic if and only if d (A) = d (B).
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
