Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diphtheria Toxin Fusion Proteins

Authors: James G. Krueger; John R. Murphy; Mansoor N. Saleh; Francine M. Foss; Jean Nichols;

Diphtheria Toxin Fusion Proteins

Abstract

Two different approaches have been undertaken to develop targeted biomolecules for therapeutics. The first was the construction of immunotoxins consisting of monoclonal antibodies chemically linked through a disulfide bond to a plant or bacterial toxin or radionuclide. Instability of the chemical conjugation of some of the earlier immunotoxins led to the concept of using protein engineering and recombinant DNA to assemble fusion genes combining the sequences for the enzymatically active and translocation domains of a toxin with those of a specific targeting ligand. From the outset, the prospect of using recombinant DNA methods to assemble the structural genes encoding bacterial toxin growth factor fusion toxins, or fusion proteins, offered significant advantages over chemical conjugation in the assembly of chimeric proteins. Most importantly, the fusion junction, or point at which the substitute receptor binding domain was linked to the toxin fragment, could be precisely determined. Expression of the fusion gene in recombinant Escherichia coli would then result in the synthesis of a single homogeneous gene product rather than the mixture of isomeric forms which result from the chemical conjugation process used in the generation of immunotoxins, thereby leading to a theoretically more uniform agent for clinical studies.

Keywords

Clinical Trials, Phase I as Topic, Lymphoma, Non-Hodgkin, Recombinant Fusion Proteins, Lymphoma, T-Cell, Lymphoma, T-Cell, Cutaneous, Clinical Trials, Phase II as Topic, Humans, Interleukin-2, Psoriasis, Diphtheria Toxin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!