
We examine a number of techniques for representing actions with stochastic effects using Bayesian networks and influence diagrams. We compare these techniques according to ease of specification and size of the representation required for the complete specification of the dynamics of a particular system, paying particular attention the role of persistence relationships. We precisely characterize two components of the frame problem for Bayes nets and stochastic actions, propose several ways to deal with these problems, and compare our solutions with Reiter's solution to the frame problem for the situation calculus. The result is a set of techniques that permit both ease of specification and compact representation of probabilistic system dynamics that is of comparable size (and timbre) to Reiter's representation (i.e., with no explicit frame axioms).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
