
In classical real analysis, the gradient of a differentiable function f : ℝn → ℝ. plays a key role - to say the least. Considering this gradient as a mapping x ↦ s(x) = ∇f(x) from (some subset X of) ℝn to (some subset S of) ℝn, an interesting object is then its inverse: to a given s ∈ S, associate the x ∈ X such that s = ∇f(x). This question may be meaningless: not all mappings are invertible! but could for example be considered locally, taking for X x S a neighborhood of some (x 0, s 0 = ∇f(x 0)), with ∇2 f continuous and invertible at x 0 (use the local inverse theorem).
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
