
In this paper, we study property preservation capabilities of several domain extension transforms for hash functions with respect to multiple enhanced security notions. The transforms investigated include MD with strengthening padding (sMD), HAIFA, Enveloped Shoup (ESh) and Nested Linear Hash (nLH). While the first two transforms and their straightforward variants are among the most popular ones in practical hash designs including several SHA-3 candidates, the last two transforms (i.e. ESh and nLH) are mainly of a theoretical interest in the analysis of multi-property-preservation (MPP) capabilities of hash domain extenders. The security notions considered are the enhanced (or strengthened) variants of the traditional properties (collision resistance, second-preimage resistance, and preimage resistance) for the setting of dedicated-key hash functions. The results show that most of these enhanced security notions are not preserved by the investigated domain extenders. This might seem a bit disappointing from a provable security viewpoint, that advocates MPP paradigm (i.e. the more properties preserved simultaneously by a transform the more popular is the transform from a theoretical viewpoint); however, it is worth stressing that the mere fact that a domain extender fails to preserve a property P does not imply that a hash function built upon it is insecure. Rather, it just implies that security of the hash function in the sense of the property P cannot be deduced based on the assumption that the underlying compression function possesses P.
properties, hash, domain, Physical Sciences and Mathematics, enhanced, capabilities, 005, security, extenders, preserve
properties, hash, domain, Physical Sciences and Mathematics, enhanced, capabilities, 005, security, extenders, preserve
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
