
PRO (Pseudorandom Oracle) is an important security of hash functions because it ensures that the PRO hash function inherits all properties of a random oracle in single stage games up to the PRO bound (e.g., collision resistant security, preimage resistant security and so on). In this paper, we propose new blockcipher-based double-length hash functions, which are PROs up to $\mathcal{O}(2^n)$ query complexity in the ideal cipher model. Our hash functions use a single blockcipher, which encrypts an n-bit string using a 2n-bit key, and maps an input of arbitrary length to an n-bit output. Since many blockciphers supports a 2n-bit key (e.g. AES supports a 256-bit key), the assumption to use the 2n-bit key length blockcipher is acceptable. To our knowledge, this is the first time double-length hash functions based on a single (practical size) blockcipher with birthday PRO security.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
