
A PID controller is a simple and general-purpose way of providing responsive control of dynamic systems with reduced overshoot and oscillation. Spiking neural networks offer some advantages for dynamic systems control, including an ability to adapt, but it is not obvious how to alter such a control network's parameters to shape its response curve. In this paper we present a spiking neural PID controller: a small network of neurons that mimics a PID controller by using the membrane recovery variable in Izhikevich's simple model of spiking neurons to approximate derivative and integral functions. © 2011 Springer-Verlag.
SpiNNaker, PID controllers, neural networks
SpiNNaker, PID controllers, neural networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
