Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2012 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Accurate Simulation of Wireless Vehicular Networks Based on Ray Tracing and Physical Layer Simulation

Authors: Gaugel, T.; Reichardt, L.; Mittag, J.; Zwick, T.; Hartenstein, H.;

Accurate Simulation of Wireless Vehicular Networks Based on Ray Tracing and Physical Layer Simulation

Abstract

Vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications is required for numerous applications that aim at improving traffic safety and traffic efficiency. As recent studies have shown, communications in this context is significantly influenced by radio propagation characteristics of the environment and the signal processing algorithms that are executed on the physical layer of the communications stack. Whereas a shadowing of the transmitted signal, e.g. due to buildings, determines the ability to communicate “around corners”, channel estimation, channel equalizing, and advanced coding schemes determine whether a receiver can decode a received signal successfully or not. Consequently, a proper assessment and evaluation of V2V and V2R communications, especially when traffic safety applications are considered, requires an accurate simulation of the wireless channel as well as the physical layer of the protocol stack. To enable a proper assessment, we integrated a physical layer simulator into the popular NS-3 network simulator, validated our implementation against commercial off the shelf transceiver chipsets, and employed ray tracing as a method to accurately simulate the radio propagation characteristics of the Karlsruhe Oststadt. Since the simulation of signal processing details and ray tracing are computationally expensive modeling methods, we based our work on the HP XC4000 to speedup the computation of both aspects.

Country
Germany
Keywords

ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004, 004, 620

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!