Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IRIS Cnrarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Part of book or chapter of book . 2011
Data sources: CNR ExploRA
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Low-Level Document Image Analysis and Description: From Appearance to Structure

Authors: Salerno E; Savino P; Tonazzini A;

Low-Level Document Image Analysis and Description: From Appearance to Structure

Abstract

This chapter deals with the problem of processing and analyzing digital images of ancient or degraded documents to increase the possibilities of inferring their structures. Classification and recognition are needed to infer structure but, when dealing with degraded documents, they are particularly difficult to apply directly to unprocessed images. This is why an intermediate step is needed that extracts automatically the "perceptual components" of the documents from their appearance. By "appearance" of a document, we mean the "raw" data set, containing the "sensorial components" of the object under study. Ancient documents of historical importance pose specific problems that are now being solved with the help of information technology. As much information as possible should be drawn from the physical documents and should be structured so as to permit specialized searches to be performed in large databases. The tools we use to treat unstructured, low-level information are both mathematical and descriptive. Under a mathematical point of view, we model our appearance as a function of all the perceptual components, or patterns we want to identify. Once the model has been established, its parameters can be learned from the data available and from reasonable assumptions on both the model itself and the patterns. Our descriptive tools form a specialized metadata schema that can help both the storage and the indexing of all the digital objects produced to represent the original document, and provides a complete description of all the processing performed. Suitable links fully interconnect the various descriptions in order to relate the different representations of the physical object and to trace the history of all the processing performed. Inferring structure is much easier by analyzing the patterns and their mutual relationships than by analyzing the appearance.

Keywords

Document Image Processing ; Metadata Editor ; Digital Libraries

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!