Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

IPv6 and Extended IPv6 (IPv6++) Features That Enable Autonomic Network Setup and Operation

Authors: Ranganai Chaparadza; Razvan Petre; Arun Prakash; Felician Németh; Slawomir Kuklinski; Alexej Starschenko;

IPv6 and Extended IPv6 (IPv6++) Features That Enable Autonomic Network Setup and Operation

Abstract

In this paper we present an insight on the IPv6 features and a few examples of propositions for Extensions to IPv6 protocols, which enable autonomic network set-up and operation. The concept of autonomicity-realized through control-loop structures embedded within node/device architectures and the overall network architecture as a whole is an enabler for advanced self-manageability of network devices and the network as a whole. GANA Model for Autonomic networking introduces autonomic manager components at various levels of abstraction of functionality within device architectures and the overall network architecture, which are capable of performing autonomic management and control of their associated Managed-Entities (MEs) e.g. protocols, as well as co-operating with each other in driving the self-managing features of the Network(s). MEs are started, configured, constantly monitored and dynamically regulated by the autonomic managers towards optimal and reliable network services. This amounts to what we call autonomic setup and operation of the network. We present how to achieve this, and also present the features that IPv6 protocols exhibit, that are fundamental to designing and building self-configuring, self-optimizing and self-healing networks i.e. IPv6 based autonomic networks.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!