
Periodic motions in DDE (Differential-Delay Equations) are typically created in Hopf bifurcations. In this chapter we examine this process from several points of view. Firstly we use Lindstedt’s perturbation method to derive the Hopf Bifurcation Formula, which determines the stability of the periodic motion. Then we use the Two Variable Expansion Method (also known as Multiple Scales) to investigate the transient behavior involved in the approach to the periodic motion. Next we use Center Manifold Analysis to reduce the DDE from an infinite dimensional evolution equation on a function space to a two dimensional ODE (Ordinary Differential Equation) on the center manifold, the latter being a surface tangent to the eigenspace associated with the Hopf bifurcation. Finally we provide an application to gene copying in which the delay is due to an observed time lag in the transcription process.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
