
In this chapter, we study the behavior of stochastic search algorithms on an important graph problem. We consider the well-known problem of computing a minimum spanning tree in a given undirected connected graph with n vertices and m edges. The problem has many applications in the area of network design. Assume that we have n computers that should be connected with minimum cost, where costs of a certain amount occur when one computer is connected to another one. The cost for a connection can, for example, be the distance between two considered computers. One needs to make n−1 connections between these computers such that all computers are able to communicate with each other. Considering a graph as a model for a possible computer network, it has n vertices and one searches for the set of edges with minimal cost that makes the graph connected.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
