
In several research areas, such as biology, chemistry, or material science, experimentation is complex, very expensive and time consuming, so an efficient plan of experimentation is essential to achieve good results and avoid unnecessary waste of resources. An accurate statistical design of the experiments is important also to tackle the uncertainty in the experimental results derived from systematic and random errors that frequently obscure the effects under investigation. In this chapter we will first present the essentials of designing experiments and then describe the evolutionary approach to design in high dimensional settings.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
