
For software transactional memory (STM) to be usable in large applications such as databases, it needs to be robust, i.e., live, efficient, tolerant of crashed and non-terminating transactions, and practical. In this paper, we study the question of whether one can implement a robust software transactional memory in an asynchronous system. To that end, we introduce a system model - the multicore system model (MSM) - which captures the properties provided by mainstream multicore systems. We show how to implement a robust software transactional memory (RobuSTM) in MSM. Our experimental evaluation indicates that RobuSTM compares well against existing blocking and nonblocking software transactional memories in terms of performance while providing a much higher degree of robustness.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
