
This paper concerns the analysis of patterns that are specified in terms of non-Euclidean dissimilarity or proximity rather than ordinal values. In prior work we have reported a means of correcting or rectifying the similarities so that the non-Euclidean artifacts are minimized. This is achieved by representing the data using a graph, and evolving the manifold embedding of the graph using Ricci flow. Although the method provides encouraging results, it can prove to be unstable. In this paper we explore how this problem can be overcome using a graph regularisation technique. Specifically, by regularising the curvature of the manifold on which the graph is embedded, then we can improve both the stability and performance of the method. We demonstrate the utility of our method on the standard "Chicken pieces" dataset and show that we can transform the non-Euclidean distances into Euclidean space.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
