
Parser combinators are a popular tool for designing parsers in functional programming languages. If such combinators generate an abstract representation of the grammar as an intermediate step, it becomes easier to perform analyses and transformations that can improve the behaviour of the resulting parser. Grammar transformations must satisfy a number of invariants. In particular, they have to preserve the semantics associated with the grammar. Using conventional type systems, these constraints cannot be expressed satisfactorily, but as we show in this article, dependent types are a natural fit. We present a framework for grammars and grammar transformations using Agda. We implement the left-corner transformation for left-recursion removal and prove a language-inclusion property as use cases.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
