
Time-series analysis aims to investigate the temporal behavior of one of several variables x(t). Examples include the investigation of long-term records of mountain uplift , sea-level fluctuations, orbitally-induced insolation variations and their influence on the ice-age cycles, millenium-scale variations in the atmosphere-ocean system, the effect of the El Nino/Southern Oscillation on tropical rainfall and sedimentation (Fig. 5.1) and tidal influences on noble gas emissions from bore holes. The temporal pattern of a sequence of events can be random, clustered, cyclic or chaotic. Time-series analysis provides various tools with which to detect these temporal patterns. Understanding the underlying processes that produced the observed data allows us to predict future values of the variable. We use the Signal Processing and Wavelet Toolboxes, which contain all the necessary routines for time-series analysis.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
