
We develop algorithms to compute edge sequences, Voronoi diagrams, shortest path maps, the Fréchet distance, and the diameter for a polyhedral surface. Distances on the surface are measured either by the length of a Euclidean shortest path or by link distance. Our main result is a linear-factor speedup for computing all shortest path edge sequences on a convex polyhedral surface.
000, Shortest paths, edge sequences, 004, ddc: ddc:004
000, Shortest paths, edge sequences, 004, ddc: ddc:004
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
