Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced Target Collision Resistant Hash Functions Revisited

Authors: Reyhanitabar, Reza; Susilo, Willy; Mu, Yi;

Enhanced Target Collision Resistant Hash Functions Revisited

Abstract

Enhanced Target Collision Resistance (eTCR) property for a hash function was put forth by Halevi and Krawczyk in Crypto 2006, in conjunction with the randomized hashing mode that is used to realize such a hash function family. eTCR is a strengthened variant of the well-known TCR (or UOWHF) property for a hash function family (i.e. a dedicated-key hash function). The contributions of this paper are twofold. First, we compare the new eTCR property with the well-known collision resistance (CR) property, where both properties are considered for a dedicated-key hash function. We show there is a separation between the two notions, that is in general, eTCR property cannot be claimed to be weaker (or stronger) than CR property for any arbitrary dedicated-key hash function. Second, we consider the problem of eTCR property preserving domain extension. We study several domain extension methods for this purpose, including (Plain, Strengthened, and Prefix-free) Merkle-Damgard, Randomized Hashing (considered in dedicated-key hash setting), Shoup, Enveloped Shoup, XOR Linear Hash (XLH), and Linear Hash (LH) methods. Interestingly, we show that the only eTCR preserving method is a nested variant of LH which has a drawback of having high key expansion factor. Therefore, it is interesting to design a new and efficient eTCR preserving domain extension in the standard model.

Related Organizations
Keywords

Physical Sciences and Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
bronze
Related to Research communities