Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Subversion of Interferon by Dengue Virus

Authors: Jorge L, Muñoz-Jordán;

Subversion of Interferon by Dengue Virus

Abstract

Dengue virus is sensed in mammalian cells by Toll-like receptors and DExD/H box RNA helicases, triggering a Type 1 interferon response. Interferon acts upon infected and noninfected cells by stimulating the JAK/STAT signaling pathway resulting in the activation of interferon stimulated genes that lead cells toward the establishment of an antiviral response. The recognition of the importance of this rapid protective response should come with the realization that dengue virus would circumvent the interferon response to propagate in the host. There is recent, mounting evidence for mechanisms encoded by the dengue virus that weaken interferon signaling. Nonstructural proteins expressed separately or in replicon vectors block phosphorylation and down-regulate expression of major components of the JAK/STAT pathway, causing reduced activation of gene expression in response to IFNalpha/beta interferon. As our understanding of viral-host interaction increases, opportunities for improved biological models and therapeutics discovery arise.

Related Organizations
Keywords

Down-Regulation, Interferon-alpha, Interferon-beta, Dengue Virus, Virus Replication, Immunity, Innate, Dengue, STAT Transcription Factors, Host-Pathogen Interactions, Humans, Janus Kinases, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!