
The name technetium was derived by the scientist Mendeleyev from the Greek word technetos, meaning “artificial.” Technetium-99m was discovered in 1937 by Perrier and Segre in a sample of naturally occurring 98Mo irradiated by neutrons and deuterons. The first generator as a source for Tc-99m was introduced in 1957 at the Brookhaven National laboratory, and the first commercially available 99Mo-99mTc generator was made available in 1965. Use of Tc-99m really revolutionized nuclear medicine procedures, particularly with the modern gamma cameras coupled to advanced electronics and computing systems. This revolution was not completed until 1970, when the stannous ion reduction method of 99mTc-diethylenetriaminepentaacetate (DTPA) production as an “instant kit” was described, that simple and convenient “shake-and-bake” preparations for a large number of 99mTc-labeled radiopharmaceuticals were possible.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
