Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mesh Simplification with Vertex Color

Authors: Han Kyun Choi; Hyun Soo Kim; Kwan H. Lee;

Mesh Simplification with Vertex Color

Abstract

In a resource-constrained computing environment, it is essential to simplify complex meshes of a huge 3D model for visualization, storing and transmission. Over the past few decades, quadric error metric (QEM) has been the most popular error evaluation method for mesh simplification because of its fast computation time and good quality of approximation. However, quadric based simplification often suffers from its large memory consumption. Since recent 3D scanning systems can acquire both geometry and color data simultaneously, the size of model and memory overhead of quadric increases rapidly due to the additional color attribute. This paper proposes a new error estimation method based on QEM and half-edge collapse for simplifying a triangular mesh model which includes vertex color. Our method calculates geometric error by the original QEM, but reduces the required memory for maintaining color attributes by a new memory-efficient color error evaluation method.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!