Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neuronal Apoptosis Pathways in Sindbis Virus Encephalitis

Authors: Pablo M, Irusta; J Marie, Hardwick;

Neuronal Apoptosis Pathways in Sindbis Virus Encephalitis

Abstract

Sindbis virus infects neurons of the brain and spinal cord leading to neuronal apoptosis and encephalitis in mice. During postnatal development, neurons of mice remain susceptible to infection but become refractory to SV-induced programmed cell death. Failure to undergo programmed cell death results in a persistent infection. However, some neurovirulent strains of Sindbis virus overcome the age-dependent protective function in neurons, leading to enhanced apoptotic cell death in the central nervous system and higher mortality rates. Sindbis virus infections can also cause hind-limb paralysis due to the death of infected spinal cord motor neurons. However, spinal cord neuron death in older mice appears to occur by mechanisms that differ from classical apoptosis observed in newborn mice based on the morphology of dying neurons at these two sites. Sindbis virus infections of mosquitoes and some mosquito cell lines, on the other hand, do not induce cell death but persistent infections, a phenomenon also observed occasionally in cultured mammalian cells as well as in brains of infected mice surviving lethal infections. Thus, both viral and cellular factors contribute to the varied outcomes of infection. The molecular mechanisms that govern the susceptibility or resistance of particular cell types to SV-induced cell death are not well understood. Furthermore, the cellular execution machinery that produces the characteristic morphological distinctions between brain and spinal cord (i.e. apoptotic versus non-apoptotic) remain to be discovered.

Related Organizations
Keywords

Neurons, Alphavirus Infections, Genetic Vectors, Age Factors, Apoptosis, Cell Line, Proto-Oncogene Proteins c-bcl-2, Animals, Humans, Encephalitis, Viral, Sindbis Virus, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!