Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Signalling of Toll-Like Receptors

Authors: Constantinos, Brikos; Luke A J, O'Neill;

Signalling of Toll-Like Receptors

Abstract

Since Toll-like receptor (TLR) signaling was found crucial for the activation of innate and adaptive immunity, it has been the focus of immunological research. There are at least 13 identified mammalian TLRs, to date, that share similarities in their extracellular and intracellular domains. A vast number of ligands have been identified that are specifically recognized by different TLRs. As a response the TLRs dimerize and their signaling is initiated. The molecular basis of that signaling depends on the conserved part of their intracellular domain; namely the Toll/IL-1 receptor (TIR) domain. Upon TLR dimerization a TIR-TIR structure is formed that can recruit TIR-containing intracellular proteins that mediate their signaling. For this reason these proteins are named adapters. There are five adapters identified so far named myeloid differentiation primary response protein 88 (MyD88), MyD88-adapter like (Mal) or TIR domain-containing adapter (TIRAP), TIR domain-containing adapter inducing interferon-beta (IFN-beta) (TRIF) or TIR-containing adapter molecule-1 (TICAM-1), TRIF-related adapter molecule (TRAM) or TICAM-2, and sterile alpha and HEAT-Armadillo motifs (SARM). The first four play a fundamental role in TLR-signaling, defining which pathways will be activated, depending on which of these adapters will be recruited by each TLR. Among these adapter proteins MyD88 and TRIF are now considered as the signaling ones and hence the TLR pathways can be categorized as MyD88-dependent and TRIF-dependent.

Related Organizations
Keywords

Toll-Like Receptors, Animals, Humans, Ligands, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!