Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://eldorado.tu-...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://eldorado.tu-dortmund.d...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1007/978-...
Part of book or chapter of book . 2008
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2008 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.17877/de...
Conference object . 2009
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
versions View all 6 versions
addClaim

Learning and Classification of Malware Behavior

Authors: Konrad Rieck; Thorsten Holz; Carsten Willems; Patrick Düssel; Pavel Laskov;

Learning and Classification of Malware Behavior

Abstract

Malicious software in form of Internet worms, computer viruses, and Trojan horses poses a major threat to the security of networked systems. The diversity and amount of its variants severely undermine the effectiveness of classical signature-based detection. Yet variants of malware families share typical behavioral patternsreflecting its origin and purpose. We aim to exploit these shared patterns for classification of malware and propose a method for learning and discrimination of malware behavior. Our method proceeds in three stages: (a) behavior of collected malware is monitored in a sandbox environment, (b) based on a corpus of malware labeled by an anti-virus scanner a malware behavior classifieris trained using learning techniques and (c) discriminative features of the behavior models are ranked for explanation of classification decisions. Experiments with different heterogeneous test data collected over several months using honeypots demonstrate the effectiveness of our method, especially in detecting novelinstances of malware families previously not recognized by commercial anti-virus software.

Country
Germany
Keywords

info:eu-repo/classification/ddc/004, 004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    357
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
357
Top 1%
Top 0.1%
Top 1%
Green