
With the sheer amount of data stored, presented and exchanged using XML nowadays, the ability to extract knowledge from XML data sources becomes increasingly important and desirable. This paper aims to integrate the newly emerging XML technology with data mining technology, using association rule mining as a case in point. Compared with traditional association mining in the well-structured world (e.g., relational databases), mining from XML data is faced with more challenges due to the inherent flexibilities of XML in both structure and semantics. The primary challenges include 1) a more complicated hierarchical data structure; 2) an ordered data context; and 3) a much bigger data size. To tackle these challenges, in this paper, we propose an extended XML-enabled association rule framework, which is flexible and powerful enough to represent both simple and complex structured association relationships inherent in XML data.
DB-DM: DATA MINING, EWI-7214, IR-63502
DB-DM: DATA MINING, EWI-7214, IR-63502
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
