
The security of double block length hash functions and their compression functions is analyzed in this paper. First, the analysis of double block length hash functions by Satoh, Haga, and Kurosawa is investigated. The focus of this investigation is their analysis of the double block length hash functions with the rate 1 whose compression functions consist of a block cipher with the key twice longer than the plaintext/ciphertext. It is shown that there exists a case uncovered by their analysis. Second, the compression functions are analyzed with which secure double block length hash functions may be constructed. The analysis shows that these compression functions are at most as secure as the compression functions of single block length hash functions.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
