Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OPUS Augsburgarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
OPUS Augsburg
Part of book or chapter of book . 2005
Data sources: OPUS Augsburg
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2005 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 3 versions
addClaim

Utility Proportional Fair Bandwidth Allocation: An Optimization Oriented Approach

Authors: Harks, Tobias;

Utility Proportional Fair Bandwidth Allocation: An Optimization Oriented Approach

Abstract

In this paper, we present a novel approach to the congestion control and resource allocation problem of elastic and real-time traffic in telecommunication networks. With the concept of utility functions, where each source uses a utility function to evaluate the benefit from achieving a transmission rate, we interpret the resource allocation problem as a global optimization problem. The solution to this problem is characterized by a new fairness criterion, utility proportional fairness. We argue that it is an application level performance measure, i.e. the utility that should be shared fairly among users. As a result of our analysis, we obtain congestion control laws at links and sources that are globally stable and provide a utility proportional fair resource allocation in equilibrium. We show that a utility proportional fair resource allocation also ensures utility max-min fairness for all users sharing a single path in the network. As a special case of our framework, we incorporate utility max-min fairness for the entire network. To implement our approach, neither per-flow state at the routers nor explicit feedback beside ECN (Explicit Congestion Notification) from the routers to the end-systems is required.

Country
Germany
Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!