
Distance vector routing protocols (e.g., RIP) have been widely used on the Internet, and are being adapted to emerging wireless ad hoc networks. However, it is well-known that existing distance vector routing protocols are insecure due to: 1) the lack of strong authentication and authorization mechanisms; 2) the difficulty, if not impossibility, of validating routing updates which are aggregated results of other routers. In this paper, we introduce a secure routing protocol, namely S-RIP, based on a distance vector approach. In S-RIP, a router confirms the consistency of an advertised route with those nodes that have propogated that route. A reputation-based framework is proposed for determining how many nodes should be consulted, flexibly balancing security and efficiency. Our threat analysis and simulation results show that in S-RIP, a well-behaved node can uncover inconsistent routing information in a network with many misbehaving nodes assuming (in the present work) no two of them are in collusion, with relatively low extra routing overhead.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
