
handle: 2268/18666
“Regular model checking” is the name of a family of techniques for analyzing infinite-state systems in which states are represented by words or trees, sets of states by finite automata on these objects, and transitions by finite automata operating on pairs of state encodings, i.e. finite-state transducers. In this context, the central problem is then to compute the iterative closure of a finite-state transducer. This paper addresses the use of regular model-checking like techniques for systems whose states are represented by infinite (omega) words. Its main motivation is to show the feasibility and usefulness of this approach through a combination of the necessary theoretical developments, implementation, and experimentation. The iteration technique that is used is adapted from recent work of the authors on the iteration of finite-word transducers. It proceeds by comparing successive elements of a sequence of approximations of the iteration, detecting an “increment” that is added to move from one approximation to the next, and extrapolating the sequence by allowing arbitrary repetitions of this increment. By restricting oneself to weak deterministic Buchi automata, and using a number of implementation optimizations, examples of significant size can be handled. The proposed transducer iteration technique can just as well be exploited to compute the closure of a given set of states by the transducer iteration, which has proven to be a very effective way of using the technique. Examples such as a leaking gas burner in which time is modeled by real variables have been handled completely within the automata-theoretic setting.
Sciences informatiques, infinite state, Computer science, model checking, Engineering, computing & technology, Ingénierie, informatique & technologie
Sciences informatiques, infinite state, Computer science, model checking, Engineering, computing & technology, Ingénierie, informatique & technologie
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
