
This paper analyses the uncertainty in the estimation of shape from motion and stereo. It is shown that there are computational limitations of a statistical nature that previously have not been recognized. Because there is noise in all the input parameters, we cannot avoid bias. The analysis rests on a new constraint which relates image lines and rotation to shape. Because the human visual system has to cope with bias as well, it makes errors. This explains the underestimation of slant found in computational and psychophysical experiments, and demonstrated here for an illusory display. We discuss properties of the best known estimators with regard to the problem, as well as possible avenues for visual systems to deal with the bias.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
