
The computer algebra of parallel modular operations with a square diapason for a variable is described. The base set of the algebra is a finite dimension metric space of modular integer vectors. Two metrics are introduced. An orthogonal normal basis is employed to reconstruct the value of the integer number corresponding to the vector. An analog of the inner product is used to advance beyond the additive range, and the vector product is defined in two ways. The algebra could serve as the basis for parallel computer arithmetic of unbounded digit integers, a theoretical foundation of parallel computing.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
