Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Deep Learning Approach to Device-Free People Counting from WiFi Signals

Authors: Inaki Eizmendi; Manuel Velez; Javier Del Ser; Javier Del Ser; Iker Sobron;

A Deep Learning Approach to Device-Free People Counting from WiFi Signals

Abstract

The last decade has witnessed a progressive interest shown by the community on inferring the presence of people from changes in the signals exchanged by deployed wireless devices. This non-invasive approach finds its rationale in manifold applications where the provision of counting devices to the people expected to traverse the scenario at hand is not affordable nor viable in the practical sense, such as intrusion detection in critical infrastructures. A trend in the literature has focused on modeling this paradigm as a supervised learning problem: a dataset with WiFi traces and their associated number of people is assumed to be available a priori, which permits to learn the pattern between traces and the number of people by a supervised learning algorithm. This paper advances over the state of the art by proposing a novel convolutional neural network that infers such a pattern over space (frequency) and time by rearranging the received I/Q information as a three-dimensional tensor. The proposed layered architecture incorporates further processing elements for a better generalization capability of the overall model. Results are obtained over real WiFi traces and compared to those recently reported over the same dataset for shallow learning models. The superior performance shown by the model proposed in this work paves the way towards exploring the applicability of the latest advances in Deep Learning to this specific case study.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?