
For multiobjective optimization problems with uncertain parameters in the objective functions, different variants of minmax robustness concepts have been defined in the literature. The idea of minmax robustness is to optimize in the worst case such that the solutions have the best objective function values even when the worst case happens. However, the computation of the minmax robust Pareto optimal solutions remains challenging. This paper proposes a simple indicator based evolutionary algorithm for robustness (SIBEA-R) to address this challenge by computing a set of non-dominated set-based minmax robust solutions. In SIBEA-R, we consider the set of objective function values in the worst case of each solution. We propose a set-based non-dominated sorting to compare the objective function values using the definition of lower set less order for set-based dominance. We illustrate the usage of SIBEA-R with two example problems. In addition, utilization of the computed set of solutions with SIBEA-R for decision making is also demonstrated. The SIBEA-R method shows significant promise for finding non-dominated set-based minmax robust solutions.
SIBEA uncertainty, pareto-tehokkuus, Tietotekniikka, monitavoiteoptimointi, hypervolume, minmax robust, set-based dominance, Mathematical Information Technology, algoritmit, Pareto optimal solutions
SIBEA uncertainty, pareto-tehokkuus, Tietotekniikka, monitavoiteoptimointi, hypervolume, minmax robust, set-based dominance, Mathematical Information Technology, algoritmit, Pareto optimal solutions
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
