Downloads provided by UsageCounts
handle: 20.500.12713/330
Deep neural networks are often computationally expensive, during both the training stage and inference stage. Training is always expensive, because back-propagation requires high-precision floating-point multiplication and addition. However, various mathematical optimizations may be employed to reduce the computational cost of inference. Optimized inference is important for reducing power consumption and latency and for increasing throughput. This chapter introduces the central approaches for optimizing deep neural network inference: pruning “unnecessary” weights, quantizing weights and inputs, sharing weights between layer units, compressing weights before transferring from main memory, distilling large high-performance models into smaller models, and decomposing convolutional filters to reduce multiply and accumulate operations. In this chapter, using a unified notation, we provide a mathematical and algorithmic description of the aforementioned deep neural network inference optimization methods.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 27 | |
| downloads | 13 |

Views provided by UsageCounts
Downloads provided by UsageCounts