
We give a brief review on non-formal star products and star exponentials and star functions (Omori et al., Deformation of expressions for elements of an algebra, in Symplectic, Poisson, and Noncommutative Geometry. Mathematical Sciences Research Institute Publications, vol. 62 (Cambridge University Press, Cambridge, 2014), pp. 171–209; Deformation of expressions for elements of algebra, arXiv:1104.1708v1[math.ph]; Deformation of expressions for elements of algebras (II), arXiv:1105.1218v2[math.ph]). We introduce a star product on polynomials with a deformation parameter ħ > 0. Extending to functions on complex space enables us to consider exponential element in the star product algebra, called a star exponential. By means of the star exponentials we can define several functions called star functions in the algebra, with some noncommutative identities. We show certain examples.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
