Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

$$\beta $$-Schemes with Source Terms and the Convergence Analysis

Authors: Nan Jiang;

$$\beta $$-Schemes with Source Terms and the Convergence Analysis

Abstract

The schemes concerned in this study are non-homogeneous \(\beta \)-schemes for \(m = 2\). The homogeneous counterparts (HCPs) of the schemes were constructed by Osher and Chakravarthy (J Oscil Theory Comput Methods Compens Compact 229–274, 1986, [8]). The entire families of \(\beta \)-schemes are defined for \(0<\beta \le (m \left( {\begin{array}{c}2m\\ m\end{array}}\right) )^{(-1)}\), where m is an integer between 2 and 8. These schemes are \(2m-1\) order accurate, variation diminishing, \(2m+1\) point bandwidth, conservative approximations to the conservation laws. Although the numerical results have been shown to be very effective (Osher and Chakravarthy in J Oscil Theory Comput Methods Compens Compact 229–274, 1986, [8], Osher and Chakravarthy in SIAM J Numer Anal 21:955–984 1984, [7]), the entropy convergence of these schemes has been open. The goal of this paper is to show that, when \(m = 2\), \(\beta \)-schemes with source terms indeed persist entropy consistency for non-homogeneous scalar convex conservation laws by using author’s recent result on extended Yang’s wave tracing theory (Jiang in On wavewise entropy inequalities for high-resolution schemes with source terms II: the fully-discrete case, submitted, [4], Yang in SIAM J Numer Anal 36(1):1–31, 1999, [10]). The entropy convergence of the HCPs of these schemes was established by the author (Jiang in Int J Numer Anal Model 14(1):103–125, 2017, [6]).

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!