
handle: 11562/992371
Biclustering, which can be defined as the simultaneous clustering of rows and columns in a data matrix, has received increasing attention in recent years, being applied in many scientific scenarios (e.g. bioinformatics, text analysis, computer vision). This paper proposes a novel biclustering approach, which extends the dominant-set clustering algorithm to the biclustering case. In particular, we propose a new way of representing the problem, encoded as a graph, which allows to exploit dominant set to analyse both rows and columns simultaneously. The proposed approach has been tested by using a well known synthetic microarray benchmark, with encouraging results.
pattern recognition, clustering
pattern recognition, clustering
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
