
Gielis transformations, with their origin in botany, are used to define square waves and trigonometric functions of higher order. They are rewritten in terms of Chebyshev polynomials. The origin of both, a uniform descriptor and the origin of orthogonal polynomials, can be traced back to a letter of Guido Grandi to Leibniz in 1713 on the mathematical description of the shape of flowers. In this way geometrical description and analytical tools are seamlessly combined.
92C80, 57N25, 54C56, 33C45
92C80, 57N25, 54C56, 33C45
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
