
handle: 11573/1119374
In this chapter, we describe three different synthetic datasets that we considered to evaluate the performance of the reviewed recurrent neural network architectures in a controlled environment. The generative models of the synthetic time series are the Mackey–Glass system, NARMA, and multiple superimposed oscillators.Those are benchmark tasks commonly considered in the literature to evaluate the performance of a predictive model. The three forecasting exercises that we study have varying levels of difficulty, given by the nature of the signal and the complexity of the task to be solved by the RNN.
Benchmark prediction tasks; Mackey–Glass system; Multiple superimposed oscillators; Nonlinear auto-regressive moving average task; Synthetic time series; Computer Science (all)
Benchmark prediction tasks; Mackey–Glass system; Multiple superimposed oscillators; Nonlinear auto-regressive moving average task; Synthetic time series; Computer Science (all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
