<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Climate change research has progressed rapidly over the last two decades, with model projections of future climate conditions gaining enough consensus to enable downscaling these changes to regional scales. While the field of HAB research has come far since its early roots, our current understanding is not well suited to utilize advances in climate modeling to project how HABs’ prevalence and character may differ in the future oceans. This situation largely is due to the complexity of interspecies competition, but it also can be attributed to the “insular” nature of HAB research. HAB studies focus more on the HAB organism, often in isolated cultures, than on the phytoplankton community in which it may or may not flourish. Even though GEOHAB fostered comparative research, it most often is not possible to quantitatively compare among published HAB studies because nonuniform methods are used. Most HAB observational programs are triggered only when toxic species abundances become high enough to threaten human health, so the specific conditions that catalyze these bloom developments cannot be described. It is difficult then to project how changing environmental conditions may influence the development of HABs, particularly given that these events generally are comparatively rare within the context of dynamic coastal ecosystems. Participants in an international workshop considered these issues and identified a number of specific steps, presented in small part here, that will help HAB research to obtain compelling evidence that climate change is impacting HAB distribution, prevalence, or character. New HAB research strategies are needed if we are to develop informed projections for HABs under anticipated end-of-century conditions in the future oceans.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |