Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Heat Transfer by Convection

Authors: Gianpaolo Ruocco;

Heat Transfer by Convection

Abstract

Being the second mode that traditionally is encountered in the study of heat transfer, with the analysis of convection we learn on the heat transfer process that is executed by a fluid stream. The stream purposefully acts as a heat carrier between two moving media in relative motion coming in contact. It is clear, then, that this topic is focussed on the effects of solid/fluid heat interaction. So, while studying convection, we exploit the notions learned with the fluid mechanics that focussed on the effects of solid/fluid dynamic interaction. As we recall that convective heat flux is ruled by the description of a heat transfer coefficient, we describe briefly some basic devices where convection is realized following the microscopic balance leading to join the distributions of the flow velocity vector and the temperature scalar. It is clear that, at this point, we should distinguish between the temperature of the solid \(T_\mathrm {s}\), the one studied in Chap. 2, and the temperature of the fluid \(T_\mathrm {f}\) that will be the subject of this chapter, but whichever temperature we consider, we really face with the same scalar variable. However, for the sake of clarity sometime we indulge in differentiating the nomenclature, but unless we will be engaged in two-phase (solid/fluid) modeling, we will hold that the subject at stake now is the fluid temperature \(T_\mathrm {f}\). Along the same lines that we exploit so far, then we derive and integrate the governing differential equations in various cases, and the concept of the thermal boundary layer is presented that carries analogies with the former fluid boundary layer. Finally, a numerical solution of the governing equations is completed, for the distribution of temperature and velocity, following the course cast so far.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!