Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Analyzing the Performance of Allocation Strategies Based on Space-Filling Curves

Authors: Jose A. Pascual; Jose A. Lozano; Jose Miguel-Alonso;

Analyzing the Performance of Allocation Strategies Based on Space-Filling Curves

Abstract

Future exascale supercomputers will be composed of thousands of nodes. In those massive systems, the search for physically close nodes will become essential to deliver an optimal environment to execute parallel applications. Schedulers manage those resources, shared by many users and jobs, searching for partitions in which jobs will run. Significant effort has been devoted to develop allocation strategies that maximize system utilization, while providing partitions that are adequate for the communication demands of applications. In this paper we evaluate a class of strategies based on space-filling curves (SFCs) that search for partitions in which nodes are physically close, compared to other alternatives that relax this requirement (e.g. non-contiguous), or make it even more strict (e.g. contiguous). Several metrics are used to assess the quality of an allocation strategy, some based on system utilization, some others measuring the quality of the resulting partitions. Contiguous allocators suffer from severe degradation in terms of system utilization, while non-contiguous allocators provide inadequate partitions. Somewhere in the middle, SFC allocators offer good system utilization while using quite compact partitions. The final metric to decide which allocator is the best depend on the severity of the slowdown suffered by applications when running in non-optimal partitions.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!